Factor-dependent archaeal transcription termination.

نویسندگان

  • Julie E Walker
  • Olivia Luyties
  • Thomas J Santangelo
چکیده

RNA polymerase activity is regulated by nascent RNA sequences, DNA template sequences, and conserved transcription factors. Transcription factors promoting initiation and elongation have been characterized in each domain, but transcription termination factors have been identified only in bacteria and eukarya. Here we describe euryarchaeal termination activity (Eta), the first archaeal termination factor capable of disrupting the transcription elongation complex (TEC), detail the rate of and requirements for Eta-mediated transcription termination, and describe a role for Eta in transcription termination in vivo. Eta-mediated transcription termination is energy-dependent, requires upstream DNA sequences, and disrupts TECs to release the nascent RNA to solution. Deletion of TK0566 (encoding Eta) is possible, but results in slow growth and renders cells sensitive to DNA damaging agents. Our results suggest that the mechanisms used by termination factors in archaea, eukarya, and bacteria to disrupt the TEC may be conserved, and that Eta stimulates release of stalled or arrested TECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex

When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. ...

متن کامل

LETTERS Transcription and Translation are Coupled in Archaea

The presence or absence of a nuclear membrane has historically been used as a taxonomic feature to divide all life into 2 groups, eukaryotes or prokaryotes, respectively. However, there is now very substantial molecular support for 3 primary phylogenetic domains (Woese 2000), and the classical definition of a prokaryote applies to both Bacteria and Archaea. Given that Bacteria and Archaea do no...

متن کامل

Ancient RNA stems that terminate transcription

Multi-subunit RNA polymerases are the enzymes that perform transcription in all living organisms and that have emerged before the divergence of domains of life. The structures of catalytic cores and their functions during elongation step of transcription cycle are very similar for all multi-subunit RNA polymerases. In contrast, the mechanisms for terminating the RNA synthesis have seemingly div...

متن کامل

Structure and Activity of a Novel Archaeal β-CASP Protein with N-Terminal KH Domains

MTH1203, a β-CASP metallo-β-lactamase family nuclease from the archaeon Methanothermobacter thermautotrophicus, was identified as a putative nuclease that might contribute to RNA processing. The crystal structure of MTH1203 reveals that, in addition to the metallo-β-lactamase nuclease and the β-CASP domains, it contains two contiguous KH domains that are unique to MTH1203 and its orthologs. RNA...

متن کامل

Conserved economics of transcription termination in eubacteria.

A secondary structure in the nascent RNA followed by a trail of U residues is believed to be necessary and sufficient to terminate transcription. Such structures represent an extremely economical mechanism of transcription termination since they function in the absence of any additional protein factors. We have developed a new algorithm, GeSTer, to identify putative terminators and analysed all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 33  شماره 

صفحات  -

تاریخ انتشار 2017